Tight Lower Bounds on the Complexity of Derivative
Accumulation

Andrew Lyons

Computation Institute, University of Chicago, and

Mathematics and Computer Science Division, Argonne National Laboratory
lyonsam@gmail .com

Theory Seminar
Department of Computer Science, University of Chicago
March 9, 2010

mailto:lyonsam@gmail.com

Who Am 17

» B.S. Computer Science, Mathematics (Vanderbilt Univ. 2006)
» Background in graph/order theory, algorithms
» 2007-present: ANL

http://www.mcs.anl.gov/OpenAD/
http://mitgcm.org/

Who Am 17

» B.S. Computer Science, Mathematics (Vanderbilt Univ. 2006)
» Background in graph/order theory, algorithms
» 2007-present: ANL

Specialized compiler OpenAD (http://www.mcs.anl.gov/OpenAD/)
implementing techniques of automatic (or algorithmic) differentiation

Primary application: MITgem (General Circulation Model)
(http://mitgcm.org/)

http://www.mcs.anl.gov/OpenAD/
http://mitgcm.org/

Motivation: Derivatives are Ubiquitous in Computational
Science and Engineering

Examples:
» Derivative-based optimization

» Numerical simulation (sensitivities)

Have code for F,

Want code to compute the value for F and its derivatives F’ (at some
argument)

A Very High-Level Overview of Computational Derivatives

Divided Differences

» Treat F as a black box

» involves step-size parameter h (inexact, needs tuning)

Symbolic Differentiation (Mathematica, etc.)

» Ignore code for F, treat as a collection of expressions (formulas)

» = produce formula for F' from formula for F

A Very High-Level Overview of Computational Derivatives

Divided Differences

» Treat F as a black box

» involves step-size parameter h (inexact, needs tuning)

Symbolic Differentiation (Mathematica, etc.)

» Ignore code for F, treat as a collection of expressions (formulas)

» = produce formula for F’ from formula for F

Automatic (Algorithmic) Differentiation

OpenAD traditional compiler .
» code for F "% code for F and F’ N P hachine code

» Considers the code for F as a circuit, appends to this a circuit for F’

» Yields exact derivatives

The OPTIMAL STRUCTURAL DERIVATIVE
ACCUMULATION Problem

straight-line code — G
Given any DAG G, find optimal way to evaluate

*711 Z H Xuv

Pe[si~tj] (u,v)eP

The OPTIMAL STRUCTURAL DERIVATIVE
ACCUMULATION Problem

exponential number of terms — easy to evaluate by dynamic programming

Straight-line code (no branches) — is this a toy problem?

The OPTIMAL STRUCTURAL DERIVATIVE
ACCUMULATION Problem

1
D\ X11 C\
1 2

X12 X12
1 2
X X
21 21
[>/ 1 f\/
X22 >

1 1 2 2
J(G) = [X1 X12 } [X1 X12 }
= 1 1 22
X1 X2 X1 X
What can we hope to say about the complexity of 7(G)?
it includes matrix multiplication as a special case

Tight Lower Bounds for Computations over Semirings

We restrict our computation to the real semiring (= monotone circuits)

Theorem (Jerrum/Snir 1982)

(k — 1)n® multiplications are necessary and sufficient to evaluate the
product AYA? ... Ak of k dense n x n matrices over (R, x,+,0,1).

Tight Lower Bounds for Computations over Semirings

We restrict our computation to the real semiring (= monotone circuits)

Theorem (Jerrum/Snir 1982)

(k — 1)n® multiplications are necessary and sufficient to evaluate the
product AYA? ... Ak of k dense n x n matrices over (R, x,+,0,1).

For k = 2, the above is implied by the following stronger result.

Theorem ((many — Pratt, Paterson, Kerr, Melhorn) 1970's)

If Ais an ng x ni matrix and B is an n1 X ny matrix, then ngnins
multiplications and no(n1 — 1)ny additions are necessary and sufficient to
evaluate AB over any semiring of characteristic zero.

Why Compute Over a Semiring?

Some combination of the following:
» Numerical stability (no run-time checks)
» Seems natural
» Our purview is the structure of derivatives and the chain rule

» This structure should certainly have meaning in semirings

Outline

Outline

Computational Model

The real semiring (R, x,+,0,1)

x and + are commutative, associative

x distributes over +

0 - additive identity/multiplicative annihilator

>
>

» 1 - multiplicative identity

>

» No additive inverses — no cancellations

Arithmetic Circuits Compute (Collections of) Polynomials

Inputs: indeterminates from X, positive constants from underlying field

Gates: Always indegree 2, of the following two types:
® gates : Compute the product of their children
@ gates : Compute the sum of their children

Arithmetic Circuits Compute (Collections of) Polynomials

Inputs: indeterminates from X, positive constants from underlying field

Gates: Always indegree 2, of the following two types:
® gates : Compute the product of their children
@ gates : Compute the sum of their children

Think of polynomials in terms of set of sets representation (monomials
and indeterminates)

Arithmetic Circuits Compute (Collections of) Polynomials

o N s
[& X3 w] J(G) = xox5 + xax3Xa + X1Xa
\\,,«O/X“
G

X1

(Foxs + %X2X3X4 + %X2X3X4 + X1Xa

1
X1 X2 5 X3 X4 X5

Monotone Multilinear Circuits Have Nice Properties

Definition (multilinear polynomial over R[X])

linear in each indeterminate in X

Monotone circuits for multilinear polynomials are multilinear
(Nisan/Wigderson 1995)

Monotone Multilinear Circuits Have Nice Properties

Definition (multiplicatively disjoint circuit)

No indeterminate x has both o and (3 as an ancestor

Parse Trees

p
Definition (Jerrum/Snir1982)
A subcircuit T of ® is a parse tree of ® if it satisfies the following
conditions:
1. T contains the (unique) output of ®.
2. If T contains a sum gate o, then T contains exactly one of the
children of o.
3. If T contains a product gate p, then T contains both of the
children of p.
4. No proper subtree of T satisfies (i)-(iii).

Parse Trees

X2/%X5
& X3 wl J(G) = xox5 + xox3X4 + X1Xa

X1

®
X1 X4 + %X2X3X4 (X)L xax3xq + x2x5

1
X1 X2 5 X3 X4 X5

X5 + %X2X3X4 + %X2X3X4 + X1Xa

Parse Trees

& X3 w J(G) = xox5 + xox3X4 + X1Xa

Parse Trees

& X3 w J(G) = xox5 + xox3Xa + X1X4

Parse Trees

& X3 w J(G) = xox5 + xox3Xa + X1X4

Parse Trees

& X3 w J(G) = xox5 + xox3X4 + X1Xa

Outline

Tight Lower Bounds

7

Theorem
An optimal arithmetic circuit computing J(G) can be constructed in
polynomial time if G belongs to one of the following classes of DAGs.

» 3-homogeneous st-DAGs
» complete st-DAGs

» series-parallel st-DAGs

3-homogeneous st-DAGs

O_Xlzl_>

x 0 0
J(G)= [X1 X X113] X221 X222 0
X321 X322 X323

X1 Pe

3-homogeneous st-DAGs

1 X X
Xi1 21 11
Dé 1 2 3
Xjp —> X22 /O_ X1 =
1 2" X
Xi3 X31 X3
\ 2 O/
X33 —>
G

If G is a 3-homogeneous st-DAG, then

C. (J(G)) = [X?| +7(G?) .

3-homogeneous st-DAGs: The Upper Bound

Let H be a vertex cover of G2, and assume WLOG that v{ € H

3-homogeneous st-DAGs: The Upper Bound

Let H be a vertex cover of G2, and assume WLOG that v{ € H

3
X11 X11
2 _pO— 3
2 3
X1n2 Xngl

17 2 2 3
X1 X1 X2t X, X1 Xa1 t Xpp

3-homogeneous st-DAGs: The Upper Bound

11 2 27 2753 3 V3
X11 X12 X13 X11 X201 Xp2 X32 X31 X33 X1 Xo1 X33
Y Y
X1 X2 X3
(O]

3-homogeneous st-DAGs: The Lower Bound

Note 1-1 correspondence between monomials of J(G) and elements of
X2

I
o @ @
/ \ /

N

\ ’ |
)‘ij N)/ ®)‘U AU®|
’ ’ ’ ’ ‘I‘\

xXXx2 3 XL X2 3 XL X2 3
i X X i X X i Xj X
Type | Type Il Type Il

Consider the gates where indeterminates come together
A: (the “lower") gates — two indeterminates

T: (the “upper") gates — three indeterminates

3-homogeneous st-DAGs: The Lower Bound

|
’ '\\‘\
1 2 T~ 3
X1i Xij Xi1

Al > X2
T > 7(G?)

Lower Bounds via Reduction Rules

We consider local transformations

G— G

where we can relate the complexity of G to that of G’

In some cases, a sequence
G;) G’H"’H G(k_l) — G(k)

with k = O (JA(G)|) reduces the graph to a single edge.

Lower Bounds via Reduction Rules: Parallel Arcs

Lemma
C(J(G))=C(J(G") +1
C.(J(G))=C4 (J(G’) +1
Cx (J(6)) = Cx (J(G")
Proof.

(<): set X' =x1 + xo
(>): set x; =0 (removes at least one sum gate)

Lower Bounds via Reduction Rules: Key Lemma

Let (u,v) be an arc in A(G).

Lemma
If there is no alternative path from u to v in G,
then every parent of x,, € ® is a ®-gate

Proof.

Suppose a sum gate o has children x,, and (.

For every parse tree that includes x,, there is a corresponding parse tree
including (. Ol

Lower Bounds via Reduction Rules: Arcs in Series

O—x1—O—x—0 |::>O X O

Lemma
If v has exactly one inedge and exactly one outedge, then

C(J(G))=C(J(G")) +1
C. (J(G)) = +(J(G))
C« (J(G)) =Cx (J(G)) +1

Lower Bounds via Reduction Rules: Arcs in Series

O—x1 —B— 32 —0 |:“>O x'

Lemma
If v has exactly one inedge and exactly one outedge, then

C(J(G))=C(J(G")) +1
C. (J(G)) = +(J(G))
C« (J(G)) =Cx (J(G)) +1

Proof.
set X' = x1 X xo

set x; = 1 (remove at least one ®-gate)

Lower Bounds via Reduction Rules: Series-Parallel st-DAGs

Definition
A single isolated edge is a series-parallel st-DAG.
If Gi, Gy are series-parallel st-DAGs, then so is their. ..

series composition: identify the sink of Gy with the source of G,

parallel composition: identify the two sources, identify the two sinks

Lower Bounds via Reduction Rules: Series-Parallel st-DAGs

Definition
A single isolated edge is a series-parallel st-DAG.
If Gi, Gy are series-parallel st-DAGs, then so is their. ..

series composition: identify the sink of G; with the source of G

parallel composition: identify the two sources, identify the two sinks

7

Theorem
The following are equivalent.

» G is a series-parallel st-DAG

» G can be reduced to a single edge by a sequence of series and
parallel reduction rule applications

» there is a circuit for J(G) that is tree structured (like a formula)

J

Lower Bounds via Reduction Rules: Complete st-DAGs

u 4 w u Vv w
X1 —=»O—Xx2—»0 |::> X1 —QO O
KX:;—/ KX/_/

-
Lemma
If v has exactly one inedge and there is no alternative path from v to
w, then

C(J(G)) = C(J(G)) +2
C4 (J(6)) = C (I(G) +1
C. (J(G)) = Cx (J(G") +1

Proof.

(<): set X' = x3+ (x1 X x2)

(>): set xo = 0 (removes at least one ®-gate and at least one
d-gate)

O

Lower Bounds via Reduction Rules: Complete st-DAGs

Lower Bounds via Reduction Rules: Comments

Optimality-preserving reduction rules should be applied whenever possible

We can turn any DAG into a homogeneous DAG by subdividing arcs
(series reduction rule)

All of our reduction rules run in polynomial time.

future work: could these rules (or similar) imply a polynomial-size kernel?

Outline

Discussion of Results

What have we seen so far?

» homogeneous DAGs correspond to iterated sparse matrix
multiplication

» finding an optimal circuit for a 3-homogeneous st-DAG < bipartite
vertex cover

» Lower bounds via reduction rules for series-parallel and complete
st-DAGs

Progress towards to original problem (OPTIMAL STRUCTURAL
DERIVATIVE ACCUMULATION)?

Complexity of Circuit Minimization

The problem becomes NP-hard when some subset of the edges may be

labeled with the multiplicative unit “1".

N
A
4
?I\\/\
[A2 NN
W /W N
RS
7 \\\
N N
A e

N

2

~
4

. 4

4

)

VAR N4

N)

SO oaY /|:5

A /'l S
YR Y)Y VB

= bilinear forms with {0,1} constants

oo, O OOoOOo

0 011
0 011
0 00O
1 010
0101
0 00O
1 000
0100

X2

NP-hard via biclique cover (Gonzalez and JaJa, 1980)

OO OOH+H OO

O OO O+ OO

_H O O OOk oo

Computing Polynomial Functions over Different Semirings

({0,1}, Vv, A)
s-t connectivity

T
L

TN
V

[(RYU{+o0},min,+))
all-terminals shortest paths
(non-negative edge weights)

AN

((R U{—00,+00}, max, min))
(all-terminals bottleneck paths)

N
/i

(R U {+o0}, min, +)] f (N, +, x)
L all-terminals shortest paths) L # s-t paths

/
N\

((R, +, x))\
L)

Jacobian accumulation

Computing Polynomial Functions over Different Semirings

[do. 1}, v,)

s-t connectivity

"/

N\
V

[(RT U {+oc0}, min, +)
all-terminals shortest paths
(non-negative edge weights)

((R U{—00,+00}, max, min))
(all-terminals bottleneck paths)

A
N
/i

(RU {+oo}, min,+)) ((N, +, x)
l all-terminals shortest paths) L # s-t paths

/M
N\

—
(_ Jacobian accumulation)

The Power of Constants

constant terms

(14 x3)(Xp + Xc) = Xb + Xc + XaXp + XaXc

this does not apply for homogeneous polynomials, and it also doesn’t
apply for “path polynomials”

Lemma
The parent of every constant input is a product gate.

Proof.
(Same as for edges with no alternative path.)

O

The Power of Constants: Monotone Multilinear Circuits
Without Constants are Even Nicer

scaling indeterminates by constants

X1 + axg + (1 — a)X2 + X3

why is it useful to have constant-free circuits?

The Power of Constants

R=(R,+,x,0,1) M= (RU{+oc}, min,+, +00,0)

7

Theorem (Jerrum/Snir 1982)
If p is a multilinear polynomial, then

CM(p) = C*(p)
C{'(p) = CE(p)
C(p) = C%(p)

Optimal Circuits are Constant-Free

Conjecture

Let p be monic, multilinear.

If p is homogenous or p is the path polynomial of some st-DAG, then
every optimal arithmetic circuit computing p over (R, +, X) is
constant-free.

Proof.
If a monotone idempotent circuit computes a monic multilinear
polynomial, then we can remove the constants

The Power of Constants

R = (R,+,x,0,1), M*" = (R U{+oo}, min, 4, +o0,0)

7

Theorem (Jerrum/Snir 1982)

If p is a homogeneous multilinear polynomial, then

Note here we have absorption: min(a,a+ b) = a

The Power of Commutativity

((R U {+o0}, min, +))
 all-terminals shortest paths)

/\

((=* U{Ll}, max,concat) ((R, +, x))
L lex. strings (_ Jacobian accumulation)

~

(<R2><2 % +>]
Jacoblan accumulation
(over 2 x 2 matrices)

\

Conjecture (Griewank/Naumann)
Commutativity has no power for evaluating J(G)

All our upper bounds use noncommutative circuits

Acknowledgements

Jean Utke/Paul Hovland/llya Safro (ANL)
Uwe Naumann (RWTH Aachen)

Andreas Griewank (Humboldt Berlin)

Sasha Razborov/Raghav Kulkarni (Chicago)
Andrew Cone (Chicago alum)

vV vVv.v.v Yy

Thanks!

Questions?

